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ABSTRACT

Law enforcement, military personnel, and forensic analysts are increasingly reliant on imaging
systems to perform in a hostile environment and require a robust method to efficiently locate
objects of interest in videos and still images. Current approaches require a full-time operator
to monitor a surveillance video or to sift a hard drive for suspicious content. In this thesis,
we demonstrate the effectiveness of automated analysis tools to detect AK-47s in images. By
training on a large corpus of labeled data, we created Viola-Jones classifiers for detection of
whole AK-47s and parts of an AK-47. Parts-based detections were then compared against
learned models using support vector machines and multi-layer perceptrons. The results of this
research show that parts-based classifiers combined with the above techniques leverage the high
recall capability of part detectors and significantly reduce false positives in comparison to both
the part and whole object classifiers. Techniques utilized in this thesis facilitate the creation of
an automated capability for detecting AK-47s in support of the law enforcement and intelligence
communities.
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CHAPTER 1:
Introduction

Intelligence personnel supporting modern military operations are increasingly reliant on imag-
ing systems to perform in hostile environments. From computer forensics to surveillance, imag-
ing systems impact commander decision making. Correspondingly, increasing amounts of data
must be processed to produce an analyzed intelligence product. With the explosion of UAV
technology, wide area surveillance assets, and deployment of ground based surveillance plat-
forms, intelligence personnel do not have the manpower to monitor all video feeds for real time
decision making. Intelligence analysts also require mechanisms to detect suspicious material
during collection operations in order to identify suspicious websites or other targets for moni-
toring. At the same time, ground forces must increasingly cope with exploiting useful data from
electronic devices and media captured during raids on insurgent or terrorist safe houses.

This thesis demonstrates computer vision techniques for surveillance, computer forensics, and
collection operations, by detecting suspicious objects in images. It focuses on the detection of
AK-47s, due to their prevalence and potential for a variety of intelligence applications. Using
computers to analyze images and video streams can decrease the response time to suspicious
activity, allowing for real time alerts to be sent to forces and directly leading to lives saved and
the disruption of enemy activities.

1.1 Operational Need
In recent years, new threats have emerged against the United States of America. These new
threats can easily hide among the populace, thwart traditional combat intelligence gathering
methods, and exploit seams in the authorities and capabilities of military and government intel-
ligence organizations. With terrorist groups, insurgencies, piracy, drug cartels and other orga-
nized crime groups, as well as the emergence of potential peer competitors all posing significant
threats to U.S. national security, intelligence professionals require new methods that flexibly
support a variety of environments and facilitate rapid decision making.

In order to counter threats in these complex environments, forces must be able to precisely locate
an individual operating within a large population. Compounding this problem is the amount of
information entering an intelligence cell. In 2009 alone, Unmanned Aerial Vehicles (UAVs)
from the United States produced 24 years worth of video, if watched continuously [1], with
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new UAV models projected to increase data volume many times over. While UAV technology
does provide the warfighter with significant advantages, more data does not necessarily equate
to better information. The same applies to the volume of forensic materials collected by ground
forces, and intelligence and propaganda intercepted by intelligence collectors. In order to be
relevant to operational forces, the data must be processed, which is a significant weak point
with modern intelligence mechanisms.

1.2 Computer Vision Support to Modern Military Operations
1.2.1 Intelligence, Surveillance, and Reconnaissance
Vision techniques offer substantial benefits for current and future Intelligence, Surveillance,
Reconnaissance (ISR) systems. Full time operators are typically employed to monitor live feeds
for direct support to operations. Using full time operators is inefficient, does not scale well, and
may prove to eventually be infeasible with the increase in data feeds from new UAV models.
In order to progress to an expansive persistent ISR system with the capability to provide real
time warnings to front line troops, vision techniques identifying weapons can be incorporated
with surveillance feeds. Reliable vision techniques can provide an operator with the capability
to monitor more than one system and facilitate rapid decision making, potentially decreasing
response time to an event.

1.2.2 Collection Operations
Image processing in support of collection operations can support insurgent/terrorist network
targeting through identification of network composition, intent, potential targets, and associated
mechanisms with the aim of disrupting an insurgent/terrorist planning cycle. Weapons can
be found in a variety of insurgent/terrorist media (Figure 1.1) and thus can be used to focus
intelligence collection efforts in order to find the proverbial “needle in a haystack.”

1.2.3 Forensics
Detained persons must be evaluated and released if there is a lack of evidence implicating the
individual. Due to the volume of detainees in a modern combat area, intelligence personnel
must rapidly “triage” detainees and focus on those persons likely having knowledge of enemy
activities. Raids on suspected terrorist safe houses typically produce a wide variety of elec-
tronic devices and media, which must be processed in a short period of time to support the
interrogation process. Image processing techniques can be used to analyze the large volume of
photos and videos that may be found in captured media, prioritizing those files for viewing by
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Figure 1.1: Terrorist Media Often Contains Weapons That Can Be Used To Focus Collection Efforts. Image is
Publicly Available at [2].

an intelligence analyst. Instead of having to view all images on a hard drive, an analyst can
first be directed to those photos having suspicious items. By focusing the analytical process,
valuable information can be rapidly provided to interrogators for use in determining a detainee’s
affiliation with enemy organizations, potential position, and likely activities.

1.3 Parts-based Object Detection Using Viola-Jones
Classifiers

While object detection has always been a major focus of computer vision research, recent ad-
vances in the field have given rise to successes in a variety of real time applications. Of note,
Viola-Jones classifiers have demonstrated particular successes in applications requiring face de-
tection at a range of scales and have the capability to locate objects in video and still images.
This rapid detection capability thus facilitates the development of a classifier that can be used
in an array of intelligence applications.

While the Viola-Jones classifier has many desirable properties, detection of an object in a photo
or video may be hindered by partial occlusion or backgrounds that reduce the silhouette of an
object. A classifier trained on the whole object is less likely to respond as a positive if part
of the object is missing. Parts-based techniques have the capability of increasing the rate of
detection, as the simpler shape of a part will be more likely to positively respond. By first
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detecting the parts, these detections can then be compared against a learned model to see if the
part detections are consistent with a known geometry. Additionally, since each subwindow of an
image is evaluated independently with a Viola-Jones classifier, false detections are common. By
using parts-based techniques, subwindows can be evaluated individually by each part classifier,
with the final object classification delayed until all part classifiers have been applied to the
image, potentially leading to a decrease in false detections.

1.4 Research Questions
This thesis addresses the following research questions:

(a) Can a parts-based Viola-Jones classifier be effective in finding AK-47s in photos and videos?

(b) Can a parts-based Viola-Jones classifier have increased detection rates in comparison to a
Viola-Jones classifier designed to detect the entire object?

(c) Can a parts-based Viola-Jones classifier have decreased false positive rates in comparison
to a Viola-Jones classifier designed to detect the entire object?

In order to answer these questions, Viola-Jones classifiers were trained to detect the whole
AK-47, as well as individual parts of the weapon. For the parts-based classifiers, a support
vector machine and multilayer perceptron were used to develop a geometric model of the part
configurations for comparison against each other, as well as in comparison against whole trained
classifiers and part-only classifiers.

1.5 Results
The results of this research show that parts-based Viola-Jones classifiers combined with either
a support vector machine or multilayer perceptron leverage the high recall capability of part
detectors and significantly reduce false positives in comparison to both the individual parts by
themselves and whole object detectors, when used with discriminative part classifiers. Clas-
sifiers trained to detect parts of an AK-47 exhibit a high recall, but a poor false positive rate
when compared against classifiers trained on the whole object. Viola-Jones classifiers can be
used to effectively detect weapons in video under a variety of lighting conditions and scales.
Additionally, in-plane rotated AK-47s can be detected at a variety of angles by training object
classifiers at a specific orientation, and then applying the classifier to rotated images.
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1.6 Organization of Thesis
The thesis is organized as follows:

(a) Chapter 1 discusses the modern operational environment and need for computer vision
techniques in support of intelligence activities.

(b) Chapter 2 contains related work relevant to parts-based object recognition.

(c) Chapter 3 discusses the methods selected for military applications, techniques for the de-
velopment of Viola-Jones classifiers, Support Vector Machines, and Multilayer Perceptrons,
and procedures for the creation of a parts-based structural model for the detection of AK-
47s.

(d) Chapter 4 contains experiment design and sources of data.

(e) Chapter 5 contains results and analysis of experiments.

(f) Chapter 6 contains concluding remarks and possible future areas for research that exploit
results from this thesis.
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CHAPTER 2:
Prior and Related Work

Object detection is important in many applications in the business, science, and intelligence
fields. Over time, numerous methods have been developed to identify objects in both still im-
ages and video. Some methods rely on color and may be somewhat scale and rotation invariant,
while others may be based on pixel, shape, or edge detections from a variety of filters. Still
others may use motion to classify the object or a set of actions. The method is typically chosen
in the light of the given task. Color may not be an option given the purpose of the proposed
system, while others that are effective may not be fast enough to implement in a real time detec-
tion system. This section compares contemporary computer vision techniques for identifying
objects and sets the context for the work in this thesis.

2.1 Related Work
A number of feature types, feature selection mechanisms, and parts combination techniques
have contributed to the goal of identifying objects in still images and video frames. This section
will compare contemporary techniques with the methods chosen in this paper.

2.1.1 Origins of Viola-Jones Classifiers
In 2001, Paul Viola and Michael Jones proposed a method of detecting faces based on Haar
wavelets, trained with Adaboost, and combined in a sequence they called a “cascade of features
[3, 4]. Using only upright rectangles that scaled both horizontally and vertically in constant
time, they achieved detection rates of 77.8% while at the same time achieving only 5 false
positives in a test of 23 images with 149 faces [4]. The authors also demonstrated that their
classifier was capable of detecting non-rotated faces at a speed of 15 frames per second [3],
offering the potential for real time object detection for video applications. Rainer Lienhart and
Jochen Maydt then expanded the work of Paul Viola and Michael Jones by developing a richer
feature set that included 45-degree rotated features for use in training a strong classifier [5].
Both of these techniques rely on supervised learning to annotate the object in an image for
training. Since the Viola-Jones classifier is not rotationally invariant, techniques for developing
rotated Haar features with the potential to locate in-plane rotated objects in an efficient manner
have been created [6]. The Viola-Jones method is appropriate for training whole and part de-
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tectors, and was chosen in this paper for it’s speed of detection, as well as the low false positive
rate.

The standard Viola-Jones cascade is binary and is executed independently on each subwindow
of an image. The number of subwindows in an image can be very large, and may result in false
positives being generated at an unacceptable rate. Additionally, it is possible that a subwindow
of an image containing an object may not make it completely through a cascade due to the
environment. In order to improve the binary cascade, a “fuzzy” framework can be provided
through the use of a voting procedure over local subwindows for cascades that do not make
it completely to the end [7]. Methods for a boosted classifier with the ability to convert raw
classifier outputs into posterior probabilities also exist and are capable of evaluating an object’s
likelihood distribution over a local area of an image [8].

2.1.2 Histograms of Oriented Gradients(HoG)
Other parts-based approaches rely on a variety of features. Histograms of Oriented Gradients
(HoG) are a common approach where orientations of gradients are summed in a portion of the
image [9, 10, 11, 12, 13, 14]. Since histograms are calculated over local regions, the method is
somewhat invariant to geometric and photometric lighting changes [10].

2.1.3 Eigenfaces
Eigenfaces, or the use of principal components analysis to find the vectors of pixel features with
the largest eigenvalues of a face, have also been used in a variety of approaches [15, 16, 17].
This method is global, works well for face recognition and when lighting variation is small,
but performance deteriorates as the lighting variation increases [15]. Independent Component
Analysis (ICA) is a technique that that can better compensate by separating a multivariate signal
into subcomponents, and thereby determine independent directions in the feature space, rather
than the dominant ones detected by PCA. This technique is better suited for classification tasks
than PCA.

2.1.4 Edge Detection
Edge features are found in variety of methods in parts-based object detection. Gabor filters
are used for edge detection in a number of related work [18, 19, 20] and are well suited for
representation of textures [21]. Gabor filters are Gaussian kernels that have been modulated by
an oscillating plane wave [21], and whose input response (the original pixel value) is determined
by its location and value with respect to the Gaussian kernel, modulated by the waves parameters
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(orientation, wavelength, phase offset, etc.). This creates distinctive activations for objects at
particular spatial locations, and can also be used to create a sparse object representation [21].

Shape recognition can also be conducted through the use of a Canny edge detector [22]. Canny
edge detection can be noise sensitive, and is typically conducted after convolving an image with
a Gaussian filter. Based on the first derivative of a Gaussian, four filters that detect vertical,
horizontal, and diagonal edges are applied to the Gaussian blurred image. Values from the first
derivative of the responses in the horizontal and vertical directions can then be used to determine
the edge gradient and direction. Canny edge detection has been shown to have a bias towards
both horizontal and vertical edges and does not provide a good approximation of rotational
symmetry [23].

Edge detection based on gradient approaches through the use of the Laplacian operator have
also been applied in related works [24, 22]. The Laplace operator is useful for blob detection,
and is found by the sum of differences over the nearest neighbors of the central pixel, after
convolving with a Gaussian kernel. The operator responds with a strong positive reaction to
dark blobs, and a strong negative reaction to bright blobs [25]. One of the disadvantages of
this approach is the operator response is dependent on the size of the Gaussian kernel for pre-
smoothing and the size of the blob structures. A multi-scale approach is thus required to find
blobs of an unknown size [25].

2.1.5 Interest Points
Interest point detection is a common approach to finding and tracking objects in photos and
video. Typically, interest point detection is used to find “corners”, or areas of an image that
have gradient changes in multiple directions. Interest points are somewhat stable to affine trans-
formations, scale changes, and rotations/translations and are suitable for localizing an object in
an image [26]. Interest point detectors are a commonly used in object detection [27, 28, 14, 29]
and can be used for unsupervised part learning.

2.1.6 Part Learning Strategies
After choosing a feature set, the best features must be selected out of all the features for learning.
Strategies for part learning vary in accordance with the overall goals for object detection. Some
strategies emphasize that parts are clustered into feature sets that are as different as possible,
which provides for learning the abstract idea of a part [27]. This is accomplished by a cost
function which evaluates a part based off of normalized correlation and attempts to place similar
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parts into the same bin with a feature id. Part learning techniques using clustering can also be
used to place parts into a tree for fast object retrieval [30].

Other methods seek to select those features that best classify a validation set. Statistical boost-
ing is a common mechanism used to find and train those features that best classify positive and
negative examples [3, 4, 24, 19, 20, 9]. The Viola-Jones method uses a form a statistical boost-
ing called Adaboost to simultaneously select and train the weak classifiers composed of Haar
features.

Rather than choosing a part based on its abstraction, or ability to best classify a validation
set, other techniques use part learning for the final classification performance of an object. In
[28], local part information is used in conjunction with global cues about an object’s silhouette.
Object detection based off part appearance and then refined through geometric location can lead
to inaccuracies if the part appearance is noisy or ambiguous [14]. This technique seeks to label
parts by appearance and location simultaneously through the use of a random field framework.
In [13], a technique for maximizing over latent part locations is used to determine the presence
of a whole object, as opposed to a discriminative process where an object is determined to not
be there if enough criteria is not met. Random local feature sampling can also used for part
learning. With this method, random part sampling is matched to randomly trained parts [18]
through a response to Gabor filters and a Euclidean distance measurement of the local maxima
responses.

2.1.7 Modeling Part Combinations
After choosing a feature set, and selecting the best set of features to learn, the location of parts
should be combined based on a trained model. By using the geometry of part detections, the
number of false detections and the amount of feature space to search can be reduced [24]. The
Sparse Network of Winnows (SNOW) architecture can be used to learn associated distance and
direction combinations between parts at various scales [27]. This technique can be used for
parts-based learning, as in any image, it is likely that only a small subset of the features are
present. This technique is suitable for use in applications with spare feature representations.
Gaussians can also be used to model the location of parts with the detection of one part improv-
ing the likelihood and location of detecting another part and can be used to detect both rigid and
flexible objects [29]. Gaussians are used in a variety of related works [24, 13, 29, 31] to model
part combinations.
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Markov random fields are also used for modeling spatial part locations as an undirected graph
representing the dependencies between detected parts [18, 14]. Markov random fields can repre-
sent cyclic dependencies, where a Bayesian network cannot [32], and are useful for determining
the joint probability of parts co-located in a graph.

In a related work, object recognition is conducted through a mixture of multi-scale part models
[13]. Parts combinations are learned through the use of a star based topology that applies a root
filter at a lower resolution, then parts-based filters at twice the spatial resolution, with the total
score for detection being a combination of root filter detection location, parts detected, and their
associated locations in relation to the trained model. Latent SVM is then used to train the parts
models on partially labeled data. Support Vector Machines are also used in [19, 20] for use in
discriminating the location of part detections.

In another related work involving parts-based pedestrian detection [28], the spatial relation-
ship among detected parts was represented by having extracted patch sections compared to a
codebook via normalized grey scale correlation and then having each matched codebook entry
“vote” for the probable location of the object. The probablistic vote is based on the probability
of matching a codebook entry, with each code book entry having a corresponding probability
distribution for the center of the object. The object center was then found in the 3D voting space
by searching for maxima with Mean Shift Mode estimation.

Facial detection with local feature sampling can also be conducted by a neural network based
approach [33]. Three types of “hidden” units, four which evaluate 10x10 pixel subregions,
sixteen which evaluate 5x5 pixel subregions, and six which evaluate are 20x5 pixel horizontal
stripes, are used to detect local features. A neural network based filter takes the responses from
the hidden unit pixel values and values from the horizontal strip regions, and outputs a result for
the window being scanned. Multiple detections spanning across windows are then combined
into a single detection.

2.1.8 Automated Part Training
Automated part training has some distinct advantages over just hard coding a part to learn. First,
automated part learning decreases the amount of time required to label data, as a person may
only be required to label the object, instead of having to laboriously label every part, or trace an
outline around an object. Additionally, the best set of parts to learn might not be immediately
clear, so a trial and error basis may produce better results than having a human choose the parts
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to learn. Unsupervised part training is conducted in a number of related works [13, 18, 14, 27].
Unsupervised part clustering is also used in a variety of related works to collect related features
into a single group [14, 27, 28, 30]. By first identifying an area (typically through the use of an
interest point detector), patches around the interest point can be extracted, and similar patches
can be clustered into a “vocabulary” [27] that composes the object. While automated training
has numerous advantages, manual part labeling is still a common approach [33, 24].

2.1.9 Suspicious Behavior Recognition
A number of other techniques have also been used to identify potentially suspicious events or
for human surveillance in video applications. Automated video analysis techniques for finding
violent events or surveillance of humans in video have been explored in detail in a variety of
related works [34, 35, 36, 37, 38, 39]. The methods in these seminal papers rely on audio visual
cues, such as the sudden flash or sound of an explosion, dynamic changes between frames, or
motion accelerations in relation to human silhouettes to determine the presence of a violent
event. While suitable for video, these techniques are not likely to be as applicable to forensic
applications searching still frames for suspicious objects.
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CHAPTER 3:
Methods For Detecting AK-47s In Support of

Military Applications

This chapter details the selection of methods in this thesis and applicability to modern military
operations. Since Viola-Jones classifiers are a foundational technique, Haar features, the inte-
gral image, and the binary cascade are discussed in some detail to provide background to the
reader. This chapter also discusses the general development of Support Vector Machines and
Multilayer Perceptrons and their utility for final classification of part combinations. Finally, the
creation of a novel parts-based structural model for AK-47s is also discussed in detail.

3.1 Selection of Techniques for Weapon Detection in Support
of Forensics and Surveillance Applications

Given the amount of related work in object detection, there are a variety of techniques to choose
from for identifying weapons in an image for surveillance or forensics applications. While color
based learning of an object has significant advantages due to its scale and rotation invariance, it
is likely not well suited for use in support of military operations where object identification must
be conducted in low light conditions (including images via night vision devices). Additionally,
given that the classifier must also be able to locate objects in still frames as well as video, tech-
niques that rely on motion, sound, or frame differencing for classification are also not likely to
be appropriate. Techniques that are appropriate for real time surveillance monitoring would be
also be suitable for scanning images or subsampling video for suspicious objects in a forensics
application.

Since speed, detection at a variety of scales and lighting conditions, and support for still images
and video are primary requirements, Viola-Jones classifiers offer some of the best potential
for employment in military applications. Though weapons are rigid objects, which are well
suited for a template based approach, one issue does arise when trying to locate them in images.
Weapons typically are recognized by silhouette, and therefore most do not have much internal
structure that makes maximum use of the Haar feature set. Additionally, background objects
and occlusion can significantly change an objects shape [22], thereby making a classifier trained
on the entire object less likely to respond as a positive detection.
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Parts-based learning offers some benefit for detecting objects under “noisy” conditions over
trying to detect the whole object. Parts of an object have fewer information than the whole
object. This means that a classifier trained on a part is also more likely to respond to this simpler
object, since there are likely less conditions that must be met in order for the classifier to respond
as a positive detection. On the other hand, since the detector is more likely to respond, there
is likely to be a significant increase in the amount of false positives generated by a part trained
classifier. By using multiple part detections, as well as their relative spatial geometry, recall
may be increased, while at the same time keeping false detections to an acceptable level.

3.2 General Machine Learning Techniques Utilized in this
Thesis

This section discusses the general machine learning techniques required to develop Viola-Jones
classifiers, Support Vector Machines, and Multilayer Perceptrons. Viola-Jones classifiers are
used as the base technique to recognize whole AK-47s, as well as the individual components for
employment in the parts-based methods. In the parts-based approach, Support Vector Machines
and Multilayer Perceptrons provide a final classification for detected part combinations.

3.2.1 Viola-Jones Classifiers
Viola-Jones classifiers are a well known technique for locating objects in videos and photos.
Fast and efficient, Viola-Jones classifiers are easily trained on a corpus of positive and negative
image samples. This is a supervised learning technique, where a human must first annotate
images with a bounding box for the object. The positive image is then cropped to the bounding
box location, converted to grey scale to eliminate the influence of color, and normalized to a
user specified size. While better classifiers do exist, the primary advantage of a Viola-Jones
classifier is the speed and efficiency with which it can detect an object. Viola-Jones classifiers
can be run in real time on video streams to detect objects of interest. The following subsections
explains the underlying functionality of a Viola-Jones classifier.

Haar Features
The Viola-Jones classifier uses features that are based on the concept of Haar wavelets, which
is a square-integral function for approximating continous functions. This square wave has the
properties of a regular wave, in that there is a repeatable high and low amplitude, with a fixed
wavelength. For image detection, this is exactly represented by a two-dimensional pair of ad-
jacent rectangles. One of the adjacent rectangles has a light area, and the other is dark, which
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represents the rise and fall of the Haar wavelet. When the pair of rectangles is placed over an
image, the average value of the dark region is subtracted from the average value of the light re-
gion [40]. This weak classifier indicates that a feature is present if the resulting subtracted value
is greater than a threshold found by training over a corpus of positive and negative images. The
advantage of this feature set is the extreme efficiency with which it can detect a feature. In
an example involving face detection with Haar features (Figure 3.1), the first set of rectangles
respond to the fact that the eye region is darker than the cheekbones, while the second set of
rectangles responds to the nose being lighter than the eyes. The original Viola-Jones classifiers
incorporated a set of non-rotated rectangles, but was expanded with 45-degree rotated rectan-
gles to provide a richer feature set for learning. In the total set, there are 8 line features, 4 edge
features, and 2 center surround features, which can be combined in a linear combination as a
strong classifier (Figure 3.2).

Figure 3.1: Haar Features for Face Detection. Image from ([3]).

Figure 3.2: Haar Features. Image from ([5]).
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The Integral Image
Since the weak classifier is determined by the difference of the sum of the values in the light re-
gion and the sum of the values in the dark region being over some threshold, a quick mechanism
is needed to determine the values in these regions. Just as the concept of integrating continuous
functions entails the summing of rectangles to determine the area below a curve, the integral
image is made by summing all the pixels above and to the left of some x,y pixel value, with the
value at the location x,y being inclusive (Figure 3.3) [40, 4, 3]. This is an extremely efficient
technique for finding the average pixel value in an area of an image. All that is required to find
the pixel value for any upright rectangle in any area of an image is four table lookups then divid-
ing by the area of the rectangle. When determining the value of a 45 degree rotated rectangle,
two passes are required over all the pixel values, once from left to right and top to bottom, then
from right to left and bottom to top [5]. The rotated rectangle value at a pixel location x,y can
then be calculated through 4 table lookups. When using a Haar feature, this is done for both
the light and the dark rectangles, and the difference of summed values is compared against a
threshold to determine if the feature is present.

Figure 3.3: Integral Image. Image from ([3]).

(a) The value of pixel at x,y is the sum of all pixels above and to the left, with x,y inclusive.
The value of any rectangle in the image can be computed with a total of 4 table lookups.
To get the value in rectangle D, take the large rectangle (A+B+C+D), and subtract out the
areas that are not used to compute the integral (namely rectangles A+C and A+B). The sum
of pixel values in D then is pixel values at 4+1-(2+3).

Adaboost for Learning a Strong Classifier
The Haar feature by itself constitutes a weak classifier, which is a classifier that gets the right
answer just slightly better than random chance [40]. When a number of weak classifiers are
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combined in a series, then an overall effect is produced that is much stronger than any one
feature by itself. Paul Viola and Michael Jones chose the Adaboost algorithm for its ability
to select and simultaneously train a set of weak classifiers [4, 3]. Using the Haar features as
weak classifiers, the Adaboost algorithm iteratively runs each feature over a set of positively
and negatively labeled images. The feature (pair of light/dark rectangles) that best classifies
the two examples correctly (i.e. has the lowest error) is then selected to update the weights.
When updating the weights, incorrectly classified examples are given more weight than those
that are correctly classified. This is an important point, in that when learning, it is usually the
marginal examples that provide the best examples for learning a new concept. Examples that
are “black and white” can be classified quite easily. It is the “grey” areas that probably provide
the best examples. After choosing the best feature and updating the appropriate threshold, the
distribution of weights is recomputed, and the cycle continues until an appropriate threshold has
been reached.

Cascade of Classifiers
Due to the large amount of subwindows checked in an image, a fast and efficient method is
required to achieve speeds that enable real time object detection. Using the Adaboost trained
classifiers as filters, the filters are combined into a degenerate tree, where the branch is a binary
classifier indicating a positive or a negative detection [40, 3]. The classifiers are arranged in
such a way that the simpler classifiers that detect most positive instances, but reject many of
the subwindows are called first, then more complex classifiers are called in order to keep false
positives lower [4, 3]. This method ensures that the majority of subwindows in the image that
do not contain the object of interest are quickly evaluated and passed (Figure 3.4).

Figure 3.4: The Viola-Jones Cascade of Adaboost Trained Filters. Image is publicly available at ([41]).
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3.2.2 Combining Classifiers with Machine Learning Techniques
The above techniques are suitable for training either whole or parts-based classifiers to identify
an object. Using various machine learning techniques, the locations of part detections can then
be checked against a learned model. Support Vector Machines and Multilayer Perceptrons were
used in this thesis to provide final classifications in relation to a structural model learned from
a training image set. The general development of Support Vector Machines and Multilayer
Perceptrons are outlined below.

Support Vector Machines
Support Vector Machines are a fast and efficient way to classify the parts detected by the Viola-
Jones classifiers. Using a feature vector of just 3 dimensions, a support vector machine can be
trained to validate the geometry of the part detections from the Viola-Jones classifiers.

Given a feature vector of object attributes as points in space, support vector machines attempt
to find a hyperplane to separate the two classes [42]. A good hyperplane is one that maximizes
the distance to the classified examples that are closest to the plane. See Figure 3.5. If the data is
linearly separable, then this hyperplane is called the maximum-margin hyperplane. Just as noted
above in the Adaboost chapter, the marginal examples for both classes have the greatest chance
of being misclassified. This is precisely where the support vector machine creates a hyperplane,
and these marginal examples are known as the support vectors. For an n-dimensional feature
vector, SVM attempts to find an n − 1 dimensional plane to classify the two examples. If the
data is not linearly separable, then a hyperplane may be found by a kernel function that projects
the data into a higher dimensional space or through the use of “slack variables” that allow for a
soft margin that accounts for misclassified examples [42].

Multilayer Perceptrons
The Multilayer Perceptron (MLP) is one of the most common types of neural networks. It is a
feed forward neural network that maps a set of input data from a provided feature vector to an
output vector [44, 42]. This is a supervised learning technique. The MLP consists of a minimum
of 3 layers: the input layer, one or more hidden layers, followed by an output layer (See Figure
3.6). Taking in an input vector, weights on the links for the connections from each perceptron
are learned via backpropagation. By iteratively working backwards from the desired outputs,
weights can be determined for the links between the layers. Since the desired output is known,
and the sampled output from the network is also known, it is possible to compute the local error
for each output neuron [45]. The local error is a factor with which the output of the neuron
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Figure 3.5: Maximum Margin Hyperplane. Image is Publicly Available at ([43]).

must have been to match the desired output. The weight of the neuron is then adjusted to the
local error in order to compensate for the incorrect classification. Neurons on the previous level
are then assigned “blame” for the local error caused at the current level. Neurons with stronger
weights at the previous level receive more “blame” for the local error caused at the current level.
The step is then repeated for the neurons at the previous level, with the “blame” as its local error
[45]. After iteratively computing the error at each level, a set of weights are created for each
link for each neuron between the layers. New unclassified feature vectors can then be provided
to the trained network, with each non-linear activation function determining whether a neuron
fires, with a corresponding weight for the link. After traveling through the entire network, an
output is provided with a total classification of the input vector.

3.3 Structural Model for Parts-based AK-47 Detection Using
Viola-Jones Classifiers

This thesis incorporates a novel technique for the creation of a structural model for AK-47s
using parts-based Viola-Jones classifiers. This structural model assumes that parts detected
belonging to an object are likely to be detected at a similar scales. The structural model also
assumes that AK-47s are consistent with the training set: barrel pointing right, with in-plane
and out-of plane rotations of no more than approximately 10 degrees. These assumptions allow
for training a model in a specific configuration, which can then be used to find AK-47s in other
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Figure 3.6: Multilayer Perceptron. Image is Publicly Available. References ([44]).

Figure 3.7: Sample Training Images for Left and Right Parts. Image is Publicly Available at [46].

orientations by rotating the image.

This structural model incorporates two parts. The rear end of the AK-47 encompassing the
pistol grip and magazine is designated as the Left Half of the AK-47. The rifle stock was not
used for training due to occlusion in a number of images, as well as due to the large number of
varieties found in the training set. The Right Half of the AK-47 includes the hand guard, barrel,
and sight post (Figure 3.7).

3.3.1 Radius of Object Detection
Since the Viola-Jones method evaluates subwindows of an image, a rectangular area containing
the object is returned with the center of detection, as well as the width and height dimensions
of the associated subwindow. In order to make a more efficient representation of the object
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location for use in the following relative feature vector, the rectangular area is converted to a
circle with the same center of detection, but with an associated radius (Equation 3.1).

DetectionRadius = (RectangleWidth+RectangleHeight) ∗ 0.25 (3.1)

3.3.2 Structural Model Feature Vector
The structural model of the AK-47 provides a mechanism to ensure that parts detected by the
left and right half AK-47 classifiers match a geometry consistent with the presence of an object.
Parts detected are placed into a vector consisting of 3 elements:

(a) Difference between the left half detection center x value and the right half detection center
x value normalized by the mean radius of the 2 detections (Equation 3.2).

NormalizedXDifference =
(RightCenterXV alue− LeftCenterXV alue)

((LeftRadius+RightRadius)/2)
(3.2)

(b) Difference between the left half detection center y value and the right half detection center
y value normalized by the mean radius of the 2 detections (Equation 3.3).

NormalizedY Difference =
(RightCenterY V alue− LeftCenterY V alue)

((LeftRadius+RightRadius)/2)
(3.3)

(c) Difference between the left and right radii normalized by the mean radius of the two radii
(Equation 3.4).

NormalizedRadiusDifference =
(RightRadius− LeftRadius)

((LeftRadius+RightRadius)/2)
(3.4)

By normalizing over the mean radius of detections, a feature vector is produced that accounts
for the relative distance between the left and right half detection centers in both the x and
y dimensions of an image (Figure 3.8). The normalized radius difference accounts for the
assumption that left and right half detections should be at approximately the same scale.
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Figure 3.8: The AK-47 Structural Model. Image of AK-47 is Publicly Available at [46].
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CHAPTER 4:
Experiments

This chapter describes the experiments conducted to train and test whole, part, and parts-based
classifiers developed to detect AK-47s. Two Viola-Jones classifiers for the whole weapon were
created to verify that a Viola-Jones classifier could be trained to find AK-47s in images and to
establish a baseline for comparison against recognition through individual parts and parts-based
techniques. Two separate part detectors were also trained, one for the rear end of the AK-47 and
one for the barrel and front sight. These experiments were conducted to determine which part
classifier is more discriminative in detecting AK-47s and to test the hypothesis that detection
of an object through part recognition increases recall and the false positive rate in relation to
a whole object. Finally, a novel approach developed in this thesis tests the hypothesis that a
parts-based technique can combine the benefits of rapid Viola-Jones classifier detections with
the increased recall capability of part detections, while simultaneously maintaining a lower false
positive rate than classifiers trained on the whole AK-47. Classifier stages were also removed
from individual classifier cascades to evaluate the impact of stage removal on recall and the
false positive rate.

4.1 Sources of Training Data
All images for training and testing were provided by selecting frames from videos, which were
obtained by searching the Internet. The strategy for training a classifier was to provide a number
of images with AK-47s, all pointing right, with in-plane and out-of plane rotations of no more
than approximately 10 degrees. The classifier was trained to recognize AK-47s in this specific
orientation. Images were rotated and flipped to recognize AK-47s in other orientations. For
the negative image set, images without AK-47s were used for training, including crowded city
streets, villages, as well as people holding objects, so that a classifier would not inadvertently
learn the hands of people.

4.2 Division of Data
Of the 18 total videos, 13 videos with 1146 cropped images of AK-47s were selected to train the
classifiers. These images included a variety of backgrounds and configurations of the weapon.
Weapon configurations included standard 30 and 40 round AK-47 magazines, with and without
slings, and standard and pistol grip foregrips of various colored textures and materials. Due to
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the wide variety of AK-47 stock types available and occlusion in a number of images, the rifle
stock was not used for training. Images of AK-47s cropped for the training set included the
pistol grip on the rear end of the AK-47 to the end of the barrel and front sight (Figure 3.7).
For the negative training set, 5660 frames were split from 23 dynamic videos. A separate image
set was developed for testing purposes. In this test set, 687 images containing AK-47 shooters
were split from 5 videos. For the negative test image set, 7045 frames without AK-47s were
split from 24 videos.

4.3 Normalization of Training Images
During the annotation process, a rectangular area containing the object was extracted from each
positive image. Prior to training, annotated sections were normalized to a specific size and
converted to grey scale. For classifiers trained on the whole object, annotated sections were
normalized to 20x40 pixels. Parts were created by taking the annotated section and dividing the
width in half. These images were then normalized to 20x20 pixels each before training (Figure
3.7).

4.4 Number of Images for Training
When training classifiers, more training data is typically better. The first whole classifier, des-
ignated Whole AK, was trained with the 1146 positive and the default 2000 negative examples
per stage. The next whole classifier, designated Whole AK Negative Resistant was trained
with more negative samples in order to improve the false positive rate. Whole AK Negative -
Resistant was trained with the 1146 positive samples and 5660 negative samples per stage. The
Left Half Detector and Right Half Detector were trained with the same images as the Whole -
AK Negative Resistant classifier.

4.5 OpenCV Training for Viola-Jones Classifiers
After preparing the images, OpenCV’s Haar training utility produced the classifiers specified
above. A complete overview of the boosting process is contained in [3]. All classifiers were
trained with the extended Haar feature set in non-symmetric mode, with each classifier’s cascade
containing 20 stages. The specified minimum hit rate for all classifiers was 0.998 per stage with
a maximum false alarm rate for each stage of 0.5.
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4.6 Training the SVM and MLP for Classifying Part
Detections

A Support Vector Machine and a Multilayer Perceptron were independently trained to test con-
sistancy of the detected part locations against the structural model and confirm the presence of
an AK-47. In order to train the SVM and MLP to classify positive and negative instances of
AK-47s, left and right half classifiers were applied to the 1146 positive training images, and
5560 negative training images, with post processing turned on. All combinations of left and
right detections in a photo were kept. Detections inside the annotated box of the training set
were considered to be true detections, while detections outside of the annotated box or in a neg-
ative photo were considered to be false detections. For a description of the structural model and
vector used for training, see Chapter 3. A graph of the geometry of the detections is provided in
Figure 4.1, showing the cluster of positive detections versus negative detections. Note that the
normalized radii difference is not included in the graph. A hyperplane separating the positive
and negative sets was then found with SVM. A Multilayer Perceptron was also trained on the
same data set for comparison and in the case the data set was not linearly separable.

Figure 4.1: Plot of Normalized Relative Part Detections In the X and Y Dimensions After Applying Left and Right
Classifiers to the Training Set.

(a) The red cluster represents relative part detections of actual AK-47s. These part detections
were used to train a Support Vector Machine and a Multilayer Perceptron to classify detec-
tions against the AK-47 Structural Model.
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4.7 Performance Measures
Performance was evaluated with two standard metrics. Temporal processing was not conducted
to achieve the reported results. Temporal processing could increase the recall over a video
sequence, since an AK-47 might not be detected in every frame, but possibly in subsequent
frames. Recall, which is a traditional measure of completeness, measures the percentage of
weapons detected in the image set (Equation 4.1). The false positive rate complements the
recall measure for each classifier by providing the probability of a false detection for each
subwindow evaluated (Equation 4.2). The following equation was used to determine recall for
each classifier:

Recall =
NumberOfWeaponsDetectedInSet

TotalWeaponsInSet
(4.1)

The following equation was used to determine the false positive rate:

FalsePositiveRate =
NumberOfFalsePositivesInImageSet

TotalAreasChecked
(4.2)

While the test set contains images of many sizes, a secondary performance metric was devised
to provide a more intuitive explanation of the false positive rate in relation to a simulated surveil-
lance system. This performance metric is compared against a standard video with a frame size
of 640 x 480 pixels, running 15 frames per second for one minute. This is a total of 900 frames
per minute with several hundred thousand subwindows checked per frame. The total number of
predicted false detections per minute is then the false positive rate times the amount of subwin-
dows checked per minute of video (Equation 4.3).The following equation gives the number of
predicted false positives per minute of video:

PredictedFalsePositivesPerMinute = FalsePositiveRate ∗ AreasPerFrame ∗ 15 ∗ 60
(4.3)

For a 640x480 image, a 20x40 whole trained detector is scanned over 314,319 areas. For the
smaller 20x20 part detections, 352,718 areas are checked in each 640x480 image. For the
entire test image set, 877,639,110 negative areas were checked for each whole detector, with
1,033,439,228 negative areas checked for each part detector.

4.8 Improving Recall by Reducing the Number of Stages
In order to improve the recall of a trained classifier, stages can be removed from the Viola-Jones
cascade. While this makes the overall whole or part classifier more likely to indicate that an
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object is present, there is also an increase in the number of false positives that will be detected by
the classifier. Classifier stages were removed from the Viola-Jones cascades from each classifier
until a recall above 85% was obtained. ROC curves for all classifiers are provided in Chapter 5.
Tables of results are provided in Appendix A.

4.9 Detecting AK-47s in a Test Image with the Structural
Model

After training Haar classifiers for the left and right halves of the AK-47 and training an SVM and
MLP to classify part geometries in relation to the structural model, classifier combinations can
be utilized to identify AK-47s in images. The left and right half detectors are first scanned over
an image producing vectors containing the normalized x center difference, normalized y center
difference, and normalized radii difference for all combinations of left and right detections. In
general, Left Half Detector detections are much more discriminative than those generated by
the Right Half Detector. Each vector is then evaluated with the support vector machine or a
multi-layer perceptron, producing a final classification for the detection.
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CHAPTER 5:
Results and Analysis

This chapter presents the results from the experiments conducted for all classifiers and classifier
combinations. First, whole trained classifiers provide the baseline for comparison against the
other classifiers and methods employed in this thesis. Next, part classifiers show individual left
and right half classifier performances and aid in determining which classifiers are more dis-
criminative. Finally, parts-based techniques using the Viola-Jones part classifiers and either a
Support Vector Machine and a Multilayer Perceptron are presented. All classifier perfomances
are evaluated with Receiver Operating Characteristic (ROC) curves to evaluate the benefit (in-
crease in recall) against the cost (higher false positive rate) caused by the removal of classifier
stages from the Viola-Jones cascade. All graphs were produced in Matlab. Tables are included
in Appendix A for additional information when referencing graphs. All source code and training
and test corpora are available upon request.

5.1 AK-47 Detection with Whole Trained Classifiers
Two classifiers were separately trained to verify that Viola-Jones classifiers could detect AK-47s
in images. The Whole AK Resistant classifier was trained with an increased number of images
without AK-47s in order to test the hypothesis that training with more negative images could
develop a classifier more resistant to false positives. Training for each classifier required ap-
proximately two days on a Intel Core 2 CPU at 2.4 GHz with 2 GB of RAM, with the Windows
XP operating system.

5.1.1 Whole Trained Classifier Results
Results for the image set with the Whole AK and Whole AK Resistant detectors are shown in
Figure 5.1. For the whole trained detectors, Whole AK (all stages) had a recall over the image
set of 67.8%, but 67.6 false positives per minute of video (FPM). Whole AK Negative Resis-
tant (all stages) had a starting recall of 61.8%, but generated 41.2 FPM. Note that Whole AK
has a higher starting recall but a higher false positive rate in comparison to Whole AK Neg-
ative Resistant, due to being trained with fewer negative images. As stages are progressively
removed from each classifier, Whole AK Negative Resistant maintains a lower false positive
rate (FPR), indicating that increased training with more negative images per stage can produce
a more discriminative classifier. By increasing the total training images from 2000 to 5660

29



per stage, Whole AK Negative Resistant recall was decreased by 6.0% and lowered the FPR
from 2.39278 ∗ 10−7 to 1.45846 ∗ 10−7. In order to achieve an a recall rate of 85%, Whole -
AK required 6 classifier stages to be removed, while Whole AK Negative Resistant required 7
classifier stages to be removed.

Figure 5.1: Whole Image Detections.

Figure 5.2: Whole Image Detections Capped at a False Positive Rate of 3 ∗ 10−6.

5.2 AK-47 Detection with Part Trained Classifiers
Classifiers were trained for both left and right halves of an AK-47 to test the hypothesis that
part trained classifiers have increased recall in relation to whole trained classifiers. Both the
Left Half classifier and the Right Half classifier were trained with 5660 negative samples per
stage in order to lower the false positive rate. It was also hypothesized that part classifiers would
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increase the false positive rate. Training for each classifier required approximately two days on
an Intel Core 2 CPU at 2.4 GHz with 2 GB of RAM, with the Windows XP operating system.

5.2.1 Part Trained Classifier Results
Results for part detectors are shown in Figure 5.3 comparing the Left Half classifier against
the Right Half classifier. This is a comparison of detecting AK-47s through just detection of
one of the parts. The Left Half detector (all stages) has a recall of 73.6%, but generates 208.2
FPM. The Left Half detector (all stages) increases recall over Whole AK Negative Resistant
by 11.8%, but also increases the false positive rate to 6.56062 ∗ 10−7 (up from 1.45846 ∗ 10−7

with the Whole AK Negative Resistant classifier). The Right Half detector (all stages) has a
recall of 78.4%, but generates 1414.8 FPM. The Right Half detector (all stages) increased recall
over the Whole AK Negative Resistant classifier by 16.6% but had a large increase in the false
positive rate to 4.45696 ∗ 10−6. In order to achieve an a recall rate of 85%, Left Half required 6
classifier stages to be removed, while Right Half required 3 classifier stages to be removed.

While part detectors have higher recall than whole detectors, part detectors alone generate far
more false positives than whole trained techniques. The Right Half detector has the highest
starting recall of any classifier, indicating that AK-47s can be effectively detected by searching
for the barrel, but results in too many false positives for incorporation into an operational system.
The results also indicate that part trained classifiers have increased recall over whole trained
classifiers, and show promise for increasing recall if the false positive rate can be controlled by
another mechanism.

Figure 5.3: Part Image Detections.
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5.3 Parts-based AK-47 Detection with an SVM for Structural
Model Classification

Given the results from the part trained classifiers, it was hypothesized that the part classifiers
could be used to increase recall, with a Support Vector Machine (SVM) used to control the false
positive rate by ensuring that part detections matched a learned model. The structural model
for AK-47 detection was introduced in Chapter 3. Training the SVM required approximately 2
seconds on Intel Core 2 CPU at 2.0 GHz with 4 GB of RAM, with the Windows Vista operating
system.

5.3.1 Parts-based AK-47 Detection with an SVM for Structural Model
Classification Results

The results for parts-based AK-47 with an SVM structural model classification are contained
in Figure 5.4. The Left Half and Right Half classifiers were each individually applied to the
image, with a Support Vector Machine used to evaluate all combinations of detections. In order
to achieve a recall rate approaching 85%, stages must be removed from both classifiers.

The Left Half detector (all stages) and Right Half detector (all stages) using a Support Vector
Machine increases the recall over the Whole AK Negative Resistant classifier, while signifi-
cantly decreasing the FPM over whole and part-based detectors. The Left and Right Half detec-
tors with SVM had a starting recall of 69.1%, while producing only 17.5 FPM. In comparison
against the Whole AK Negative Resistant classifier, the parts-based SVM classifier increased
recall by 7.3%, with a 57.5% reduction in the amount of false positives per minute. At the upper
end of the recall scale, as both stages are progressively removed from both classifiers, the false
positive rate greatly increases. This is due to the combination of all left and right detections
being applied and checked against the SVM model. This indicates that if the part classifiers are
not very discriminative, then the combination of all left and right detections in an image can in-
crease the chance of classifying detections as a false positive. In order to achieve a recall rate of
85%, 7 classifier stages must be removed from both of the Left Half and Right Half classifiers.

5.4 Parts-based AK-47 Detection with an MLP for Structural
Model Classification

A Multilayer Perceptron was also trained in order to compare against the Support Vector Ma-
chine. Once again, it was hypothesized that part classifiers could be used for increased recall,
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Figure 5.4: Parts-based SVM Image Detections.

Figure 5.5: Parts-based SVM Image Detections Capped at 5 ∗ 10−6.

while using the Multilayer Perceptron to control the false positive rate by comparing part detec-
tions against the AK-47 structural model developed in Chapter 3. Training the MLP required
approximately 2 seconds on Intel Core 2 CPU at 2.0 GHz with 4 GB of RAM, with the Windows
Vista operating system.

5.4.1 Parts-based AK-47 Detection with an MLP for Structural Model
Classification Results

Results for the image set with part detectors and an MLP is contained in Figure 5.6. The Left -
Half and Right Half classifiers were applied to the image, with a Multilayer Perceptron used
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to evaluate all combinations of detections. In order to achieve a recall rate approaching 85%,
stages must be removed from both classifiers.

The Left Half and Right Half detectors (all stages) using a Multilayer Perceptron also increased
the recall over the Whole AK Negative Resistant classifier, while significantly decreasing the
FPM over whole and parts-based detectors. The Left and Right Half detectors with MLP had a
starting recall of 68.8%, while producing only 16.3 FPM. In comparison against Whole AK -
Negative Resistant classifier, the parts-based MLP classifier increased recall by 7.0%, with a
60.4% reduction in the amount of false positives per minute. Once again, at the upper end
of the recall scale, as both stages are progressively removed from both classifiers, the false
positive rate greatly increases. This is due to the combination of all left and right detections
being applied and checked against the MLP model. This indicates that if the part classifiers
are not very discriminative, then the combination of all left and right detections in an image
can increase the chance of classifying detections as a false positive. In order to achieve a recall
rate of 85%, 7 classifier stages must be removed from both of the Left Half and Right Half
classifiers.

Figure 5.6: Parts-based MLP Image Detections.

5.5 All Detector Performance - Recall vs. FPR
In Figure 5.8, all detectors all compared on a single graph. Due to the wide variation in false
positive rates generated, detector performance is best evaluated where a chosen operational
system would likely operate. In Figure 5.9, the graph is capped at an FPR of 2 ∗ 10−7 false
positives per area checked, or about one false positive per 5 million areas checked.
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Figure 5.7: Parts-based MLP Image Detections Capped at 5 ∗ 10−6.

Figure 5.8: All Detector Performance.

5.6 All Detector Performance: Recall vs. False Positives per
Minute of Video

In order to better represent the false positive rate of an operational system, the FPR is also
shown in terms of the number of false positives per minute of video at a 15 frames a second at
640 x 480 resolution. See Figure 5.10. In Figure 5.11, the graph is capped at 200 false positives
per minute of video to show classifier performance at the lowest false positive rates.
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Figure 5.9: All Detector Performance Capped at FPR of 2 ∗ 10−7.

Figure 5.10: All Detectors. Recall vs. False Positives per Minute of Video.

5.7 Overall Analysis of Classifiers for AK-47 Detection
Whole object classifiers trained on AK-47s using traditional Viola-Jones techniques are capa-
ble of detecting weapons in images and video. While suitable, whole object classifiers do suffer
from several problems when trying to detect weapons. First, weapon silhouettes become dif-
ficult to distinguish when the background is sufficiently cluttered, leading to the Viola-Jones
cascade to reject the subwindow prior to reaching the end. This results in lower recall for the
classifier. Next, since each subwindow is evaluated independently and the number of subwin-
dows in an image can be quite large, the false positive rate is typically higher. This is due to the
fact that there is no other mechanism with which to evaluate the subwindow to ensure that the
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Figure 5.11: All Detector Performance, Recall vs. FPM, capped at 200 False Positives per Minute of Video.

Figure 5.12: All Detector Performance, Recall vs. FPM, capped at 1000 False Positives per Minute of Video.

classifier detection is consistent with other object detections in the image.

Part classifiers outperform all other detectors in regards to recall, due to being trained on a
simpler shape; however, the false positive rates generated by part detectors are too high to be
incorporated into an intelligence application. First, the Right Half detector demonstrates that
a large number of AK-47s can be detected by simply searching for the barrel. While effective
in regards to recall, the Right Half detector is unsuitable for a surveillance system since there
are far too many occurences of horizontal lines in an environment. For the Left Half detector,
the shape of the rear end of the AK-47 is slightly more complex. This means that the Left Half
detector is trained to recognize a shape with greater information, since the rear end of the AK-47
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encompasses a pistol grip and a distinctive magazine shape, rather than horizontal lines for the
barrel. This is evidenced by the lower recall and lower false positive rate of the the Left Half
detector in comparison with the Right Half detector. Recall for the Left Half detector is greater
than whole detectors, since this is a simpler shape than the whole object.

Results from the part detectors support the hypothesis that recall is increased by searching for
simpler shapes, while also leading to an increase in the number of false positives. Parts-based
techniques offer potential for controlling the rising false positive rate, as long as the part de-
tections are somewhat discriminative. The best overall performer in terms of the false positive
rate for a simulated surveillance system (Figure 5.11) is the Left Half and Right Half detectors
(all stages) using a Multilayer Perceptron to classify part detections in relation to the AK-47
Structural Model (Figure 3.8). Left Half and Right Half detectors (all stages) using a Support
Vector Machine also produce favorable results. Both techniques lead to an increase in recall
and a significant reduction in the amount of false positives detected in comparison with the best
whole trained classifiers for use in a simulated surveillance system. Two important consider-
ations are evident in the result graphs. First, due to the Structural Model, recall of an entire
object is contingent on detection of both a left and right half of an AK-47. Reducing just one
of the two classifiers can provide a slight increase in recall, but performance reaches a plateau
very rapidly, since while one part is being detected, the other is not detected at all. This means
that the individual part detection is then discarded, leading to a missed detection. Another con-
sideration indicated by the resulting graphs is that parts-based techniques only perform better
than whole classifiers, as long as the parts classifiers are somewhat discriminative. As classifier
stages were removed from both left and right classifiers, the amount of false part detections in
an image greatly increases. Since the parts-based technique classifies all combinations of left
and right half detections against the Structural Model, this increases the likelihood of a false
detection of an entire AK-47.

The techniques employed in this thesis are suitable for video and still images, though the clas-
sifier choice may differ depending on the application. For video surveillance, parts-based tech-
niques offer substantial benefits for AK-47 detection in comparison against either whole or
part classifiers. For video surveillance, a discriminitive classifier choice is needed due to the
extremely large amount of subwindows checked in each minute of video. While temporal pro-
cessing was not conducted to obtain any results in this thesis, the parts-based techniques can
increase recall, while significantly reducing the amount of false positives, provided few, if any,
classifier stages are removed from the left and right half detectors. By using temporal process-
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ing, an AK-47 might not be detected in a particular frame, but may be detected in subsequent
frames. Temporal processing over a video sequence is likely to further increase recall, while
still limiting the false positive rate (see Future Work in Chapter 6). For still images, higher rates
of recall may be required due to only having one chance to detect the weapon. Parts-based tech-
niques continue to offer significant advantages for still frames over whole and part classifiers,
if a recall of less than approximately 75% is acceptable. For desired rates of 75% and greater,
whole trained classifiers begin to offer advantages over parts-based methods, due to the lack of
discriminative part combinations.

The results of all classifiers in terms of reported amounts of false positives per minute of video
contains an indication of the utility of each classifier. Instead of having to watch a minute of
video, an analyst will be required to scan only cropped image areas for actual AK-47s. In
comparison to whole object detectors, unreduced left and right half classifiers with a Multilayer
Perceptron have a 60.4% reduction in the amount of false positives with a 7.0% increase in
recall, enabling an analyst to rapidly scan images in less time required to watch an entire minute
of video.

5.8 Detecting AK-47s at a Variety of In-plane Rotated Angles
The above tests were conducted on an image set with right facing AK-47s, with angles similar
to those used in training. By utilizing part trained classifiers with either an SVM or MLP trained
to recognize an AK-47 at a particular angle, AK-47s at other angles can be found by rotating
the images. With an increase in the amount of runs for the detector, the false positive rate was
expected to increase. In order to test this hypothesis, a prototype was tested over a separate
image set of 3727 images from Dr. Garfinkel’s govdocs1 corpus [47]. This prototype test
incorporated Left and Right Half detectors (all stages) and an SVM, with a rotation angle of
10 degrees. None of the images contained AK-47s. Out of 1,517,722,847,280 areas checked,
571 false positives were detected, with a FPR of 3.76222 ∗ 10−10 or approximately one false
positive per 2,658,005,114 areas checked. While the detector has not been tested against a large
positive image set at this point (due to a lack of a large image set with in-plane rotated AK-
47s), Figure 5.13 confirms the capability to find rotated AK-47s with these methods of training.
Classifiers trained with these methods also can be used to find weapons similar to AK-47s,
including AK-74s and RPKs (Figure 5.14).
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Figure 5.13: Parts Based Viola-Jones Classifiers With SVM True Positives. Images are Publicly Available at [48, 49].

Figure 5.14: Weapons Similar to an AK-47 (including AK-74s and RPKs) can be Found With Classifiers and Methods
Used in This Thesis. Images are Publicly Available at [2, 50].
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CHAPTER 6:
Conclusions

6.1 Concluding Remarks
Our experiments show that parts-based Viola-Jones classifiers combined with either a Support
Vector Machine or Multilayer Perceptron leverage the high recall capability of part detectors and
significantly reduce false positives in comparison to both the individual parts by themselves and
whole object detectors, as long as the part classifier for the left and right halves are sufficiently
discriminitive. Classifiers trained to detect parts of an AK-47 exhibit a high recall, but a poor
false positive rate when compared against classifiers trained on the whole object. Our novel
technique leverages the rapid detection inherent in Viola-Jones classifiers to detect AK-47s at
a variety of scales, lighting, and background environments, while at the same time increasing
recall and reducing false positives in comparison to traditional whole object approaches for
video applications.

The techniques employed in this thesis are suitable for video and still images. For video
surveillance, parts-based techniques offer substantial benefits for AK-47 detection in compari-
son against either whole or part classifiers, since a discriminitive classifier choice is needed due
to the extremely large amount of subwindows checked in each minute of video. For still im-
ages, higher rates of recall may be required due to only having one chance to detect the weapon.
Parts-based techniques continue to offer significant advantages for still frames over whole and
part classifiers, if a recall of less than approximately 75% is acceptable. For desired rates of
75% and greater, whole trained classifiers begin to offer advantages over parts-based methods,
due to the lack of discriminative part combinations.

The results of all classifiers in terms of reported amounts of false positives per minute of video
contains an indication of the utility of each classifier. Instead of having to watch a minute of
video, an analyst will be required to scan only cropped image areas for actual AK-47s.

This research directly benefits modern operational forces. Intelligence analysts are increasingly
reliant on imaging systems, and require capabilities to deal with the growing amounts of data
produced by surveillance, collection, and forensic systems. By rapidly locating an AK-47 in a
video or image, analysts can focus on exploiting suspicious media and provide timely, relevant
intelligence to forces in theater. Weapon detection in video also supports data fusion efforts and
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collection management functions to better automate future persistent Intelligence, Surveillance,
and Reconnaissance (ISR) systems. While initial results from these experiments demonstrate a
capability, more work is needed to further increase recall and lower the amount of false positives
detected.

6.2 Future Work
6.2.1 Training
All training images for this thesis were provided by videos found on the internet. Training by
video provides the capability to rapidly assemble a database of images, though similar back-
grounds in images likely impact the overall classifier training. A more diverse image set, with
a variety of backgrounds will likely improve recall. During testing, images with false positives
should be fed back to retrain the classifier in order to lower the false positive rate. Additionally,
an operational system should incorporate actual images from captured hard drives and surveil-
lance imagery in order to train for the likely domain.

6.2.2 Additional Part Training for AK-47 Detection
This thesis compared classifiers trained on a whole AK-47 against a parts-based technique using
part combinations of left and right AK-47 halves. By training additional parts, the false positive
rate may be lowered. Additional part detections may improve the likelihood of finding an object
in situations where the sillouette of the object is obscured by back ground or when part of an
object is occluded in the image.

6.2.3 Automated Part Training
Automated part training can provide several advantages over hard coding parts. First, humans
do not know the best selection of parts to train. It is possible that by training parts through the
use of interest point operators and clustering, a diverse set of parts can be trained and compared
to find a better combination than those found through human selection. Second, automated
part training is much faster to implement. As the number of parts increases, the work required
to annotate parts for training and testing increases. Automated part training can decrease the
workload required to train a variety of parts.

6.2.4 Probabalistic Cascade and Part Probability Distributions
While the binary Viola-Jones cascade is fast and efficient, each subwindow is evaluated in-
dependently of all other subwindows in the image. By using neighboring window detections
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(including multi-scale detections), the overall likelihood of a detection can be increased. Part
probability distributions can also be used to “vote” for object centers. With postprocessing
turned off, the parts will likely be detected across multiple subwindows. With each part “vot-
ing” for a center, there will likely be a high probability generated at the object center. The binary
nature of the Viola-Jones cascade also contributes to lower recall. An object is detected only
after passing through all stages of the cascade. By returning a probability for each subwindow
instead of a binary result, each subwindow can be evaluated and contributes to the overall prob-
ability of an object being present. The overall decision for object detection should be delayed
until after all subwindows have been evaluated, with each window voting for a center with a
likelihood of detection.

6.2.5 Training Multiple Object Classes Simultaneously
Due to the intelligence application of this research, classifiers must be robust and capable of
detecting a variety of objects in cluttered, dynamic scenes. In [51], a technique for training
multiple object classes simultaneously using boosting is discussed. Since most modern rifles
share common characteristics, it would be far more efficient to train a class of objects, rather
than a specific classifier for each weapon type.

6.2.6 Integration with Forensics/Surveillance Applications
The overall objective for this computer vision research is to enable detection of suspicious
content in images, whether on a hard drive, website, or during surveillance operations from
a variety of platforms. Web crawlers and content detection programs can utilize a library of
trained classifiers to scan images, or subsample video frames for suspicious content. Trained
classifiers can also be integrated with surveillance applications to reduce the burden of having
a human constantly monitoring a video feed for suspicious activity. Temporal processing of
detections can help to improve recall and lower the false positive rates since, an AK-47 might
not be detected in a particular frame for a video, but might be detected in susequent frames.

6.2.7 Integration With Natural Language Processing
Computer vision techniques combined with Natural Language techniques may yield results
when searching for suspicious media. Digital content containing both suspicious words and
images increases the likelihood of a successful detection. Additionally, after object detection
techniques identify suspicious media pages, words in proximity to the suspicious image can
be used to refine language models, and possibily identify new vocabulary words that help in
discriminating enemy activity.
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APPENDIX A:
Tables

The section contains the results for all detectors. Each classifier is reported with its associated
recall, false positives per minute of 640x480 video at 15 frames per second, and false positive
rate. Please see Chapter 3 for the AK-47 structural model, and how performance measures were
calculated.

A.1 Whole Object Detectors
Table A.1: Summary of Findings—Whole AK

Classifier Name Recall False Detections Per Minute False Positive Rate
Whole AK 19 0.6783 67.68 2.39E-07
Whole AK 18 0.7132 139.56 4.93E-07
Whole AK 17 0.7656 289.12 1.02E-06
Whole AK 16 0.7933 526.68 1.86E-06
Whole AK 15 0.8064 975.36 3.45E-06
Whole AK 14 0.8296 1817.60 6.43E-06
Whole AK 13 0.8777 3107.88 1.10E-05
Whole AK 12 0.8835 6864.60 2.43E-05
Whole AK 11 0.9155 11303.05 4.00E-05
Whole AK 10 0.9388 17062.07 6.03E-05
Whole AK 9 0.9446 26173.94 9.25E-05
Whole AK 8 0.9723 35109.83 0.12E-03

Table A.2: Summary of Findings—Whole AK Negative -
Resistant

Classifier Name Recall False Detections Per Minute False Positive Rate
Whole AK Neg Resist 18 0.6186 41.25 1.46E-07

Whole AK Negative Resistant - Continued on next page
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Table A.2—Summary of Findings—Whole AK Negative Resistant—Continued

Classifier Name Recall False Detections Per Minute False Positive Rate
Whole AK Neg Resist 17 0.6317 60.59 2.14E-07
Whole AK Neg Resist 16 0.6593 128.28 4.53E-07
Whole AK Neg Resist 15 0.7074 294.92 1.04E-06
Whole AK Neg Resist 14 0.7583 692.35 2.44E-06
Whole AK Neg Resist 13 0.7947 1172.94 4.15E-06
Whole AK Neg Resist 12 0.8267 2244.36 7.93E-06
Whole AK Neg Resist 10 0.8733 4202.50 1.49E-05
Whole AK Neg Resist 9 0.8922 8700.58 3.08E-05
Whole AK Neg Resist 8 0.9344 16161.49 5.71E-05
Whole AK Neg Resist 7 0.9548 25637.27 9.06E-05
Whole AK Neg Resist 6 0.9839 39249.15 0.14E-03

A.2 Part Detectors
Table A.3: Summary of Findings—Left Half Detector

Classifier Name Recall False Detections Per Minute False Positive Rate
Left Half Unreduced 0.7365 208.26 6.56E-07
Left18 0.7467 311.78 9.82E-07
Left17 0.7612 477.04 1.50E-06
Left16 0.7947 823.53 2.59E-06
Left15 0.8165 1219.48 3.84E-06
Left14 0.8253 1882.67 5.93E-06
Left13 0.8704 3992.34 1.26E-05
Left12 0.9141 7323.96 2.31E-05
Left11 0.9505 13778.00 4.34E-05
Left10 0.9767 21597.13 6.80E-05
Left9 0.9941 32397.69 0.10E-03
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Table A.4: Summary of Findings—Right Half Detector

Classifier Name Recall False Detections Per Minute False Positive Rate
Right Half Unreduced 0.7845 1414.84 4.46E-06
Right18 0.8151 2151.75 6.78E-06
Right17 0.8442 4251.29 1.34E-05
Right16 0.8835 6627.90 2.09E-05
Right15 0.9301 11521.50 3.63E-05
Right14 0.9461 15083.19 4.75E-05
Right13 0.9854 22516.19 7.09E-05

A.3 Parts Based Classifiers with a Support Vector Machine
Table A.5: Summary of Findings—Parts Based Classifiers
with an SVM

Classifier Name Recall False Detections Per Minute False Positive Rate
Left(Unred)Right(Unred) 0.6914 17.50 5.52E-08
Right(Unreduced)Left18 0.6986 22.11 6.97E-08
Right(Unreduced)Left17 0.7103 31.63 9.97E-08
Right(Unreduced)Left16 0.7292 47.30 1.49E-07
Right(Unreduced)Left15 0.7423 75.25 2.37E-07
Right(Unreduced)Left14 0.7467 111.19 3.50E-07
Right(Unreduced)Left13 0.7583 229.45 7.23E-07
Right(Unreduced)Left12 0.7656 403.93 1.27E-06
Right(Unreduced)Left11 0.7714 798.34 2.51E-06
Right(Unreduced)Left10 0.7758 1294.12 4.08E-06
Right(Unreduced)Left9 0.7772 2011.37 6.34E-06
Right(Unreduced)Left8 0.7802 3450.18 1.09E-05

Parts Based Classifiers with an SVM - Continued on next page
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Table A.5—Summary of Findings—Parts Based Classifiers with an SVM—Continued

Classifier Name Recall False Detections Per Minute False Positive Rate
Left18Right18 0.7117 31.63 9.97E-08
Left17Right17 0.7321 86.93 2.74E-07
Left16 Right16 0.7554 242.36 7.63E-07
Left15Right15 0.7787 593.76 1.87E-06
Left14Right14 0.7860 1107.67 3.49E-06
Left13Right13 0.8311 3389.05 1.06E-05
Left12Right12 0.8762 9140.59 2.88E-05
Left11Right11 0.9301 25360.63 7.99E-05
Left(Unreduced)Right18 0.7030 24.57 7.74E-08
Left(Unreduced)Right17 0.7117 45.15 1.42E-07
Left(Unreduced)Right16 0.7132 67.57 2.13E-07
Left(Unreduced)Right15 0.7176 105.05 3.31E-07
Left(Unreduced)Right14 0.7176 137.61 4.34E-07
Left(Unreduced)Right13 0.7292 191.06 6.02E-07
Left(Unreduced)Right12 0.7321 284.75 8.97E-07
Left(Unreduced)Right11 0.7365 403.01 1.27E-06
Left(Unreduced)Right10 0.7336 462.91 1.46E-06
Left(Unreduced)Right9 0.7278 555.67 1.75E-06

A.4 Parts Based Classifiers with a Multilayer Perceptron
Table A.6: Summary of Findings—Parts Based Classifiers
with an MLP

Classifier Name Recall False Detections Per Minute False Positive Rate
Left(Unred)Right(Unred) 0.6885 16.28 5.13E-08
Right(Unreduced)Left18 0.6928 18.43 5.81E-08
Right(Unreduced)Left17 0.7045 25.80 8.13E-08
Right(Unreduced)Left16 0.7234 42.69 1.35E-07

Parts Based Classifiers with an MLP - Continued on next page
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Table A.6—Summary of Findings—Parts Based Classifiers with an MLP—Continued

Classifier Name Recall False Detections Per Minute False Positive Rate
Right(Unreduced)Left15 0.7336 59.28 1.87E-07
Right(Unreduced)Left14 0.7365 88.77 2.80E-07
Right(Unreduced)Left13 0.7496 203.96 6.43E-07
Right(Unreduced)Left12 0.7583 383.04 1.21E-06
Right(Unreduced)Left11 0.7656 775.00 2.44E-06
Right(Unreduced)Left10 0.7700 1265.25 3.99E-06
Left18Right18 0.7059 24.88 7.84E-08
Left17Right17 0.7278 73.72 2.32E-07
Left16Right16 0.7540 213.79 6.73E-07
Left15Right15 0.7685 535.40 1.69E-06
Left14Right14 0.7802 1002.00 3.16E-06
Left13Right13 0.8165 3355.88 1.10E-05
Left12Right12 0.8660 9661.86 3.04E-05
Left11Right11 0.9155 25511.45 8.04E-05
Left(Unreduced)Right18 0.7001 20.58 6.48E-08
Left(Unreduced)Right17 0.7103 38.70 1.22E-07
Left(Unreduced)Right16 0.7147 58.05 1.83E-07
Left(Unreduced)Right15 0.7190 100.13 3.15E-07
Left(Unreduced)Right14 0.7205 130.54 4.11E-07
Left(Unreduced)Right13 0.7263 179.38 5.65E-07
Left(Unreduced)Right12 0.7307 283.21 8.92E-07
Left(Unreduced)Right11 0.7336 381.20 1.20E-06

53



THIS PAGE INTENTIONALLY LEFT BLANK

54



Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

55


	Introduction
	Operational Need
	Computer Vision Support to Modern Military Operations
	Parts-based Object Detection Using Viola-Jones Classifiers
	Research Questions
	Results
	Organization of Thesis

	Prior and Related Work
	Related Work

	Methods For Detecting AK-47s In Support of Military Applications
	Selection of Techniques for Weapon Detection in Support of Forensics and Surveillance Applications
	General Machine Learning Techniques Utilized in this Thesis
	Structural Model for Parts-based AK-47 Detection Using Viola-Jones Classifiers

	Experiments
	Sources of Training Data
	Division of Data
	Normalization of Training Images
	Number of Images for Training
	OpenCV Training for Viola-Jones Classifiers
	Training the SVM and MLP for Classifying Part Detections
	Performance Measures
	Improving Recall by Reducing the Number of Stages
	Detecting AK-47s in a Test Image with the Structural Model

	Results and Analysis
	AK-47 Detection with Whole Trained Classifiers
	AK-47 Detection with Part Trained Classifiers
	Parts-based AK-47 Detection with an SVM for Structural Model Classification
	Parts-based AK-47 Detection with an MLP for Structural Model Classification
	All Detector Performance - Recall vs. FPR
	All Detector Performance: Recall vs. False Positives per Minute of Video
	Overall Analysis of Classifiers for AK-47 Detection
	Detecting AK-47s at a Variety of In-plane Rotated Angles

	Conclusions
	Concluding Remarks
	Future Work

	List of References
	Appendices
	Tables
	Whole Object Detectors
	Part Detectors
	Parts Based Classifiers with a Support Vector Machine
	Parts Based Classifiers with a Multilayer Perceptron

	Initial Distribution List

